System Identification of Adapting Neurons

نویسنده

  • Eric Hunsberger
چکیده

This report investigates how neurons with complex dynamics, specifically adaptation, can be incorporated into the Neural Engineering Framework. The focus of the report is fitting a linear-nonlinear system model to an adapting neuron model using system identification techniques. By characterizing the neuron dynamics in this way, we hope to gain a better understanding of what sort of temporal basis the neurons in a population provide, which will determine what kinds of dynamics can be decoded from the neural population. The report presents four system identification techniques: a correlation-based method, a least-squares method, an iterative least-squares technique based of Paulin’s algorithm, and a general iterative least squares method based of gradient descent optimization. These four methods are all used to fit linear-nonlinear models to the adapting neuron model. We find that the Paulin least-squares method performs the best in this situation, and linear-nonlinear models fit in this manner are able to capture the relevant adaptation dynamics of the neuron model. Other questions related to the system identification, such as the type of input to use and the amount of regularization required for the least-squares methods, are also answered empirically. The report concludes by performing system identification on 20 neurons with a range of adaptation parameters, and examining what type of temporal basis these neurons provide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree

In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016